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Abstract
A modeled Bose system consisting of N particles with two-body interaction
confined within volume V under the inhomogeneity of the system is investigated
using the Feynman path integral approach. The two-body interaction energy
is assumed to be dependent on the two-parameter interacting strength a and
the correlation length l. The inhomogeneity of the system or the porosity
can be represented as density n with interacting strength b and correlation
length L. The mean-field approximation on the two-body interaction in the
Feynman path integrals representation is performed to obtain the one-body
interaction. This approximation is equivalent to the Hartree approximation in
the many-body electron gas problem. This approximation has shown that the
calculation can be reduced to the effective one-body propagator. Performing the
variational calculations, we obtain analytical results of the ground-state energy
and the condensate density which are in agreement with that from Bugoliubov’s
approach.

PACS numbers: 05.30.Jp, 31.15.xk

1. Introduction

Recently, Bose–Einstein condensation in a disordered system has attracted many researchers,
both theorists and experimentalists [1–4]. In experiments, the systems consisting of liquid
4He adsorbed in porous media, such as Vycor or silica gel, exhibit many interesting properties,
which have not yet been fully understood theoretically, such as the suppression of superfluidity
[5], a rich variety of elementary excitations [6], the critical behavior near the phase transition
different from the bulk [7], and the condensate–noncondensate interaction generated by the
inhomogeneity of the matter.

In a dilute Bose gas, the transition temperature Tc is an increasing function of the
interaction parameter, a3N [8–12] where a is the hard sphere diameter and N is the particle
density. In the case of liquid 4He, the transition temperature is reduced as a consequence of
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interparticle interactions. In the low-density regime, the critical temperature increases by the
effect of the Vycor system [13]. The dilute Bose gas in the presence of quenched impurities
can be worked out analytically within the Bogoliubov model by treating the random external
potential as a perturbation. The effect of disorder on the ground-state energy, superfluid and
condensate fraction are calculated by Astrakharchik et al [14]. They have found that the
superfluid and condensate components of the system are suppressed by the disorder.

Huang and Meng [15] proposed a model for the three-dimensional dilute Bose gas in a
random potential. They formulated the random potential for porous material with the delta-
function impurity potential and then analyzed their model using the Bogoliubov transformation
and taking the ensemble average. They found that both BEC and superfluidity are depressed
by the random potential. They also found that the superfluidity disappears below the critical
density even at 0 K and predicted that the superfluid phase enters the normal phase with
decreasing temperature. However, the random potential of their model does not include the
pore size and thus it is difficult to compare quantitatively with the experiment. Recently,
Kobayashi and Tsubota [16] had proposed a model to improve Huang and Meng’s model by
adding the pore size dependence of the random potential. Their model works well, and leads
to specific heat calculation.

In this paper, we consider a system of N bosons confined within the volume V . The
two-body interaction is assumed to be a Gaussian function with interacting strength a and
the correlation length l. The porosity of the system or the inhomogeneity is represented by
density of porosity n with interacting strength b and correlation length L. The main idea
of this approach is to perform the mean-field approximation on the two-body interaction
in the Feynman path integral representation. This approximation is equivalent to replacing
the two-body interaction into a one-body interaction with the effective random potential. As
in the electron gas problem [17] we assume that the static variables are distributed randomly
throughout the volume V as the inhomogeneity of the system. We will show that this effective
one-body propagator allows us to determine many physical properties such as the ground-state
energy, the effective mass and the condensate density.

As a consequence of the above assumptions, we will show that physical quantities can be
explained using some dimensionless parameters, namely a3N the gas parameter, χ ≡ n/N the
ratio of concentration of the porosity and interacting particle, and R ≡ χ(b/a)2 the strength of
disorder. The outline of this paper is as follows. In section 2, we present the model Lagrangian
of the system and introduce the non-local harmonic trial action. In section 3, we present the
effective one-body propagator which leads to calculating the ground-state energy in both short
and long correlation lengths. In section 4, we present the statistical properties of the Bose
disordered systems. The final section is devoted to the discussion and conclusion.

2. The model Lagrangian

We consider a system with N bosons interacting via the pair potentials u(−→r i − −→r j ) under the
influence of n external impurity potentials v(−→r i − −→

R k) distributed randomly. The Lagrangian
of the system is

L=
N∑

i=1

1

2
m

·−→r
2

i −
N∑

i<j

u(−→r i − −→rj )−
N∑

i=1

n∑
k=1

v(−→r i − −→
R k), (1)

where
−→
R k are the impurity positions assumed to be completely random, and m is the mass of

the bosons. In terms of Feynman’s path integral representation, we can write the propagator
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associated with this Lagrangian as

P(−→r N(t), −→r N(0), t; {−→
R n}) =

∫ −→
rN (t)

−→
rN (0)

DN(−→r N(τ )) exp

[
N∑

i=1

i

h̄

∫ t

0
dτ

(
1

2
m

·−→r
2

i (τ )

)]

× exp

⎡
⎣− i

h̄

∫ t

0
dτ

N∑
i<j

u(−→r i − −→rj ) − i

h̄

∫ t

0
dτ

N∑
i=1

n∑
k=1

v(−→r i − −→
R k)

⎤
⎦ . (2)

Edwards and Gulyaev [18] have pointed out that the average over all configurations of
equation (2) can be performed exactly, and the result is

P(−→r N(t), −→r N(0), t) =
∫ −→

rN (t)

−→
rN (0)

DN(−→r N(τ )) exp

[
N∑

i=1

i

�

∫ t

0
dτ

(
1

2
m

·−→r
2

i (τ )

)]

× exp

⎡
⎣−

N∑
i<j

i

�

∫ t

0
dτ u(−→r i(τ ) − −→rj (τ ))

+
N∑

i=1

n

∫
d
−→
R k

(
e− i

h̄

∫ t

0 dτv(−→r i (τ )−−→
R k) − 1

)⎤⎦ , (3)

where n ≡ n/V is the number density of the impurity. To perform the Gaussian approximation
of the propagator, we expand the exponential of the impurity potential v in equation (3) and
keep terms only to the second order of v. The first-order term then gives the average of
scattering potential, while the second-order term leads to the fluctuations of the scattering
potential. Alternatively, we may think of the scattering potential as a random potential, and
the result of Edwards and Gulyaev enables us to explicitly calculate its average and fluctuations.
In detail, expanding the exponential leads to

N∑
i=1

n

∫
d
−→
R k

(
e− i

h̄

∫ t

0 dτv(
−→
ri (τ )−−→

Rk) − 1
)

≈ −
N∑

i=1

i

h̄
n

∫ t

0
dτ V (τ) +

N∑
i=1

(
− i

h̄

)2 n

2

∫ t

0

∫ t

0
dτ dσWL(−→r i(τ ) − −→r i(σ )). (4)

For the impurity potential in the form of a Gaussian function,

nv(−→r (τ ) − −→
R k) = 2nπh̄2b

m
(πL2)−3/2 exp

⎡
⎣−

(−→r (τ ) − −→
R k

L

)2
⎤
⎦ , (5)

the mean potential is

nV (τ) = n

∫
d
−→
R kv

(−→r i(τ ) − −→
R k

)
= ξb

2
(6)

and the correlation takes the form
n

2
WL(−→r i(τ ) − −→r i(σ )) = n

2

∫
d
−→
R kv(−→r i(τ ) − −→

R k)v(−→r i(σ ) − −→
R k)

= ξL exp

[
− (−→ri (τ ) − −→r i(σ ))

2L2

2
]

, (7)

where b and L, respectively, represent the interacting strength and the correlation length,
ξb = 4nπh̄2b/m and ξL = (n/2)(2πh̄2b/m)2(πL2)−3/2 with the dimension of energy squared.
It will be seen later that the correlation length is comparable with the pore size of the porous
material as discussed by Kobayashi and Tsubota [16].
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3. The effective one-body propagator

In order to compare our approach with other theories, we must first transform the two-body
interaction into a one-body interaction. This can be achieved by replacing one of the dynamical
variables −→r j (τ ) of the two-body interaction into the one-body with the static parameter

−→
R j .

We assume that the
−→
R j distribute completely randomly. Physically, this approximation

resembles the Hartree approximation in the electron gas problem. In this case, one assumes
that the wavefunctions of other particles are classical. Therefore, one can replace other
wavefunctions as electrostatic charges distributed throughout the solid. In the Feynman path
integral approach, we work on the configuration representation instead of the wavefunction.
Performing the mean-field random average, we can write the propagator as

P(−→r N(t), −→r N(0), t) =
∫ −→

rN (t)

−→
rN (0)

DN(−→r N(τ )) exp

[
N∑

i=1

i

h̄

∫ t

0
dτ

(
1

2
m

·−→r
2

i (τ )

)]

× exp

[
N∑

i=1

N

2

∫
d
−→
R j

(
e− i

h̄

∫ t

0 dτ u(
−→
ri (τ )−−→

Rj ) − 1
)

− i

h̄
N

ξb

2
t +

N∑
i=1

(
− i

h̄

)2 n

2

∫ t

0

∫ t

0
dτ dσWL(−→r i(τ ) − −→r i(σ ))

]
. (8)

The two-particle interacting potential is assumed to be a Gaussian function potential of the
form

Nu(−→r (τ ) − −→
R j) = 4Nπh̄2a

m
(πl2)−3/2 exp

⎡
⎣−

(−→r (τ ) − −→
R j

l

)2
⎤
⎦ . (9)

The two parameters, a and l, represent the interacting strength and the correlation length of
two-body interaction, respectively. Again, expanding the exponential term, we obtain the
first mean-field contribution. The second term gives rise to the fluctuation of the mean-field
contribution. The same method used to obtain the porosity is applied to this problem. Inserting
the interacting potential, we finally have the one-body propagator. Therefore, the effective
one-body propagator is

P(−→r N(t),−→r N(0), t) =
∫ −→

rN (t)

−→
rN (0)

DN(−→r N(τ )) exp

[
i

h̄

∫ t

0
dτ

N∑
i=1

1

2
m

·−→r
2

i (τ )

]

× exp

[
− i

h̄
N

ξa

2
t +

N∑
i=1

(
− i

h̄

)2 N

4

∫ t

0

∫ t

0
dτ dσWl(

−→r i(τ ) − −→r i (σ ))

]

× exp

[
− i

h̄
N

ξb

2
t +

N∑
i=1

(
− i

h̄

)2 n

2

∫ t

0

∫ t

0
dτ dσWL(−→r i(τ ) − −→r i(σ ))

]
, (10)

where ξa = 4Nπh̄2a/m and ξl = (N/4)(4πh̄2a/m)2(2πl2)−3/2. In order to perform the
calculation, we follow the method we developed to study the electron in random potential.
The main idea is to introduce a trial action with the non-local harmonic action given as

S0 =
N∑

i=1

∫ t

0
dτ

1

2
m

·−→r
2

i (τ ) −
N∑

i=1

mω2

4t

∫ t

0

∫ t

0
dτ dσ(−→r i(τ ) − −→ri (σ ))2, (11)

where ω is a variational parameter. Fortunately, this model can be solved exactly. The result
is
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P0(
−→r N(t),−→r N(0), t) =

( m

2π ih̄t

) 3
2 N

(
ωt

2 sin
(

ωt
2

)
)3N

× exp

[
i

h̄

N∑
i=1

mω

4
cot

(
ωt

2

)
(−→ri (t) − −→ri (0))2

]
. (12)

We can rewrite the effective one-body propagator in terms of the trial propagator as

P(−→r N(t), −→r N(0), t) = P0(
−→r N(t), −→r N(0), t)

〈
exp

[ i

h̄
(S − S0)

]〉
S0

, (13)

where the symbol 〈 〉S0 represents the average with respect to the trial action S0. Expanding
the above average in terms of cumulants and keeping only the first cumulant [17], we have

P(−→r N(t), −→r N(0), t) � P0(
−→r N(t), −→r N(0), t) exp

[ i

h̄
〈S − S0〉S0

]
. (14)

The propagator P0 is given in equation (12). The next step is to evaluate the action difference
i
h̄
〈S − S0〉S0 which can be written as

i

h̄
〈S − S0〉S0 = − i

h̄
N

ξa

2
t +

[
N∑

i=1

( i

h̄

)2
∫ t

0

∫ τ

0
dτ dσξl

1

A
3/2
l (τ, σ )

exp

[
−

−→
R 2(τ, σ )

2l2A
3/2
l (τ, σ )

]]

− i

h̄
N

ξb

2
t +

[
N∑

i=1

( i

h̄

)2
∫ t

0

∫ τ

0
dτ dσξL

1

A
3/2
L (τ, σ )

exp

[
−

−→
R 2(τ, σ )

2L2A
3/2
L (τ, σ )

]]

− i

h̄
〈S0〉S0

, (15)

where
−→
R 2(τ, σ ) = 〈−→r i(τ ) − −→ri (σ )〉2

S0

=
(

cos
(

ω
2 (t − |τ + σ |)) sin

(
ω
2 (τ − σ)

)
sin

(
ω
2 t

)
)2

(−→r (t) − −→r (0))2, (16)

and

A
3/2
l (τ, σ ) =

(
1 +

2

l2
G(τ, σ )

)3/2

; A
3/2
L (τ, σ ) =

(
1 +

2

L2
G(τ, σ )

)3/2

, (17)

where the Green function is given by

G(τ, σ ) = ih̄ sin
(

ω(τ−σ)

2

)
sin

(
ω(t−(τ−σ))

2

)
mω sin

(
ωt
2

) . (18)

The average 〈S0〉S0
in equation (15) can be evaluated exactly. The result has been reported by

one of us [17]. Collecting all contributions, we obtain the approximated propagator with the
first cumulant approximation as

P
(−→r N(t), −→r N(0), t

) =
( m

2π ih̄t

) 3
2 N

(
ωt

2 sin
(

ωt
2

)
)3N

× exp

[
N∑

i=1

i

h̄
m

[
1

4
ωt cot

(
1

2
ωt

)
−

(
1

2
ωt csc

(
1

2
ωt

))2
]

(−→ri (t) − −→ri (0))2

2t

]

× exp

[
3N

2

(
1

2
ωt cot

(
1

2
νt

)
− 1

)]
exp

[
− i

h̄
N

(
ξa

2
+

ξb

2

)
t

]

5
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× exp

[
N∑

i=1

( i

h̄

)2
∫ t

0

∫ τ

0
dτ dσξl

1

A
3/2
l (τ, σ )

exp

[
−

−→
R 2(τ, σ )

2l2A
3/2
l (τ, σ )

]]

× exp

[
N∑

i=1

( i

h̄

)2
∫ t

0

∫ τ

0
dτ dσξL

1

A
3/2
L (τ, σ )

exp

[
−

−→
R 2(τ, σ )

2L2A
3/2
L (τ, σ )

]]
. (19)

3.1. Ground-state energy

To obtain the ground-state energy, we replace t by −ih̄β. This transformation allows us to
turn the propagator into the density matrix. For large β the one-body density matrix can be
written as

ρ(−→r (β),−→r (0), β) =
β→∞

(
m∗

2πh̄2β

)3/2

exp

[
−E0β − m∗

2h̄2β
(−→r (β) − −→r (0))2

]
. (20)

The leading term gives the ground-state energy and the second term in the exponential gives
the wavefunction of the system. To be able to use the Feynman variational principle, we take
the trace of the density matrix. Since the system is translational invariant, only the diagonal
part contributes to the ground-state energy. The trace gives right to the volume of the system,

Tr ρ(−→r (β) ,−→r (0), β) =
β→∞ V

(
m∗

2πh̄2β

)3/2

exp[−E0β], (21)

where the ground-state energy is

E0 = 3

4
Eω + 4πa3NEa

(
1 +

b

a

n

N

)
+

2ξl

θ3
l Eω

(
1 − θl + ln

(
1

2
+

1

2θl

))

+
2ξL

θ3
LEω

(
1 − θL + ln

(
1

2
+

1

2θL

))
, (22)

where θl = √
1 + 2El/Eω, θL = √

1 + 2EL/Eω,Ea = h̄2/2ma2, El = h̄2/2ml2, EL =
h̄2/2mL2 and Eω = h̄ω is the variational parameter to be determined.

3.1.1. White noise limit. Taking the small l and L limit so that 2El/Eω 
 1 and
2EL/Eω 
 1, we can write the ground-state energy in terms of the dimensionless parameters
as

E0 = 4πa3NEa

(
1 +

b

a

n

N

)
− 4πa3NEa

(√
2

π

a

l
+

b

a

n

N

1√
2π

b

L

)

+
3

4
Eω + 2 (1 − ln 2) a3N

√
Ea

√
Eω

√
π (2 + R) , (23)

where R = χ (b/a)2 represents the strength of disorder and χ = n/N . Minimizing the
ground-state energy by solving dE0/dEω = 0, we get

Eω = (
4
3

√
π(1 − ln 2)a3N(2 + R)

)2
Ea. (24)

In order to avoid the divergency in taking the ‘white noise’ limit, we set l = a and L = rp.
The physical meaning of the hard-sphere model is that the correlation length of the interacting
particle and the impurity cannot be less than diameter of particle a and diameter of impurity
or pore size rp. Substituting equation (24) into equation (23), we obtain

E0

Ea

= 4πa3N

(
1 +

b

a

n

N

)
+ 4π(1 − ln 2)2(a3N(2 + R))2 − 4πa3N

(√
2

π
+

R√
2π

a

rp

)
.

(25)

6
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We note that for the white noise limit, a and b are scattering lengths of the interacting particles
and impurities. This result can be compared with the result of Kobayashi and Tsubota [16]
for the case of l → 0 and L = rp as

E0

Ea

= 4πa3N

(
1 +

b

a

n

N

)
+ (a3N)3/2 512

√
π

15

+ 2(a3N)3/2π3/2R

[
−e2α(5 + 4α){1 − erf

√
2α} +

√
2

πα
(1 + α)

]
, (26)

where α = (a3N/π)
(
r2
p

/
a2

)
. By examining equations (25) and (26), one finds that the

first term in both approaches arises from the Bose gases without the disorder. To include
the disorder, we find that both approaches are slightly different due to different approaches.
For the case of Kobayashi and Tsubota, the approach is based on the extension of Huang
and Meng theory [15] for finite correlation length. The method of Huang and Meng is the
generalization of the Bogolubov model which is represented in the momentum representation.
In our approach, we start with the Feyman path integral approach which is written in the
configuration representation. In principle, both approaches should give the same result if there
is no approximation. Our result can be compared with the result of Astrakharchik et al [14] for
the case of both the two-body interaction and the random interaction with the delta potential
functions

E0

Ea

= 4πa3N

(
1 +

b

a

n

N

)
+ (a3N)3/2

(
512

√
π

15
+ 16π3/2R

)
. (27)

3.1.2. Long length limit. We take the large l and L limit so that 2El/Eω � 1 and
2EL/Eω � 1. Therefore we can expand equation (22) in the power of 2El/Eω and 2EL/Eω

as θl � 1 + El/Eω and ln (1/2 + 1/2θl) � −El/2Eω. Thus we can write equation (22) as

E0 = 3

4
Eω + 4πa3NEa

(
1 +

b

a

n

N

)
− 12a3N

√
Ea

√
2πE

5/2
l

E2
ω

− 6a3N
√

Ea

√
2πE

5/2
L R

E2
ω

.

(28)

Minimizing the ground-state energy by solving dE0/dEω = 0, we get

Eω = −2
√

2
(
a3N

√
πEa

(
2E

5/2
l + E

5/2
L R

))1/3
. (29)

Substituting equation (29) into equation (28), we obtain

E0

Ea

= 4πa3N

(
1 +

b

a

n

N

)
− 9

2
√

2

(
√

πa3N
(a

l

)5
(

2 +

(
l

L

)5

R

))1/3

. (30)

We find that the second term in equation (30) is very small. Therefore, we can approximate
the ground state energy for the long length limit as the mean-field energy.

4. Quantum statistics

The propagator of the system is reduced to the free particle propagator when ω = 0. This
means that we measure the system using the free particle propagator. Taking the limit ω = 0,
we have

〈−→r i(τ ) − −→ri (σ )〉
S0

= (τ − σ)

2
(−→r (t) − −→r (0)) (31)

and

7
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0.4

0.6

0.8

1N   / N  c        0

a  N
__

3

Figure 1. The condensate density against a3N . The dash line is condensate density without
impurity and the solid line is condensate density in the presence of the impurity for the white noise
limit. (l = a, L/a = 3, n/N = 1/2, b/a = 2 and R = 2.)

G(τ, σ ) = ih̄(τ − σ)(t − (τ − σ))

2mt
. (32)

Substituting equations (31) and (32) into equation (19) and expanding the exponential term
up to the second order, we can calculate the first and the second terms exactly. For the large-t
limit, the propagator can be written in a simple form as

P(−→r (t),−→r (0), t) =
(

m∗

2π ih̄t

)3N/2

e− i
h̄
NE0t exp

[
i

h̄

m∗

2t

N∑
i=1

(−→r i(t) − −→r i(0))2

]
, (33)

where the effective mass is

m∗ = m

(
1 − 16

√
2π

3
a3N

(
2l

a
+

L

a
R

))
, (34)

and the ground-state energy is

E0 = 4πa3NEa

(
1 +

b

a

n

N

)
− 4πa3NEa

√
2

π

a

l
− 4πa3NEa

b

a

n

N

1√
2π

b

L
. (35)

This ground-state energy is the same as that in equation (23) in the limit of Eω → 0. The
effective mass ratio is

m∗

m
= 1 − 16

√
2π

3
a3N

(
2l

a
+

L

a
R

)
. (36)

Thus we obtain the ground-state energy and effective mass for any correlation lengths.
Therefore the N-body density matrix can be written as

ρ(−→r (β),−→r (0), β) =
(

m∗

2πh̄2β

)3N/2

e−NE0β exp

[
− m∗

2h̄2β

N∑
i=1

(−→r i(β) − −→r i(0))2

]
. (37)

In order to study in statistical mechanics, we sum over all possible permutations. Therefore,
the partition function can be written as

Q(µ) = exp

[
V

(
m∗

2πh̄2β

)3/2

ζ5/2(α)

]
, (38)

8
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where α = eµβ, µ is a chemical potential and ζ5/2 (α) = ∑∞
ν=1

αν

ν5/2 . Using the definition

N c = 1
βQ(µ)

∂Q(µ)

∂µ
, we obtain the condensate density as

N c = N0

(
1 − 16

√
2π

3
a3N

(
2l

a
+

L

a
R

))3/2

, (39)

where the condensate density N0 = (
mkTc

2πh̄2

)3/2
ζ3/2(1) for ideal gas at T < Tc. We find that the

condensate density is depleted by the repulsive interaction and the strength of disorder (see
figure 1). If there is no interaction and impurity, the system is only an ideal Bose gas.

5. Conclusion

In this paper, we consider Bose systems in a disordered system with a finite correlation length
L and with a pair potential of interacting particles with correlation length l using the Feynman
path integral approach. The two-body interacting strength is taken as a and the impurity is
taken as b. For the white noise limit both a and b are scattering lengths. The main idea of
this approach is to perform the mean-field approximation in the Feynman path integrals. We
replace one of the dynamic variables of the two-body interaction into a static parameter and
assume that the static parameters are completely random distribution throughout the sample.
This average over all configurations of the static parameters can be compared with the Hartree
approximation of the many electron gas problem. The advantage of using the Feynman path
integral is that we can take care of the divergence arising from using the delta potential. For
the white noise limit l → a and L = rp, we can compare with the result of Kobayashi and
Tsubota with l → 0 and L = rp. For the case of l → 0 and L → 0, we can compare with
the result of Astrakharchik et al for the mean-field contribution. For the random potential
contribution, it is different due to different approaches. Moreover, the Feynman path integral
theory can be used to study the long correlation length of interacting particles and impurities.

We have also calculated the condensate density using the one-body propagator. In the
limit ω → 0, the propagator of the system reduces to that of the free particle. The partition
function is obtained after summing over all permutations of the N-body density matrix. We
have found that for dilute gas, the repulsive interacting particles, the strength of disorder and
the correlation length of both interacting particles and impurities suppress the condensate
density.
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